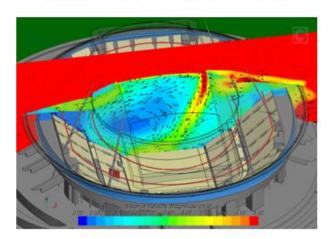
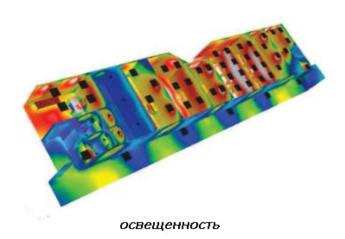
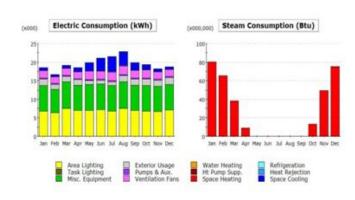


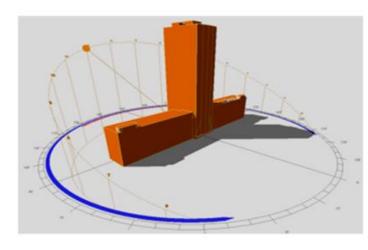
1 . Задачи математического моделирования

2.Примеры моделирования объектов в России






скоростные и температурные поля


- 1. Моделирование скоростных и температурных полей применительно к комфорту в помещениях;
- 2. Моделирование солнечного излучения и тепловых нагрузок от него;
- 3. Энергетические модели зданий; расчет энергоэффективност и здания;
- 4. Моделирование искусственной и естественной освещенности.

энергетическая модель

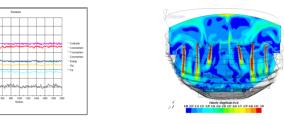
тепловые нагрузки от солнечного излучения

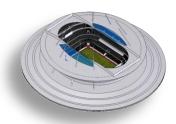
BCA

О процессе математического моделирования

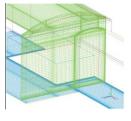
ПОСТРОЕНИЕ ТРЕХМЕРНОЙ ГЕОМЕТРИИ ОБЪЕКТА (ТВЕРДОТЕЛЬНОЙ МОДЕЛИ)

ПОСТРОЕНИЕ РАСЧЕТНОЙ СЕТКИ

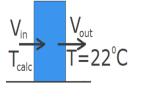

ЗАДАНИЕ ГРАНИЧНЫХ УСЛОВИЙ. ввод ПАРАМЕТРОВ



ОТЛАДКА. ТЕСТИРОВАН ИЕ МОДЕЛЕЙ ПРОВЕДЕНИЕ РАСЧЕТОВ



СИПАНА ПОЛУЧЕННЫХ ДАННЫХ выводы



При проведении математического моделирования реальное физическое пространство заменяется приближенной моделью - так называемым вычислительным пространством.

В случае конечнообъемного представления такое вычислительное пространство представляет собой совокупность элементарных объемов различной формы (тетраэдры, гексаэдры, призмы и т.д.), в которых выполняются законы сохранения массы, импульса, энергии.

Вычислительная гидродинамика использует численные методы для решения фундаментальных нелинейных уравнений в частных производных, описывающих поведение течения (уравнения Навье-Стокса) для заданных геометрии, граничных условий, физики потока и т.д.

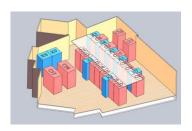
Процесс математического моделирования относится к области научно-прикладных работ, поэтому он проводится высококвалифицирова нными и опытными специалистами в области вычислительной гидродинамики в тесном сотрудничестве с профессионаламиинженерами.

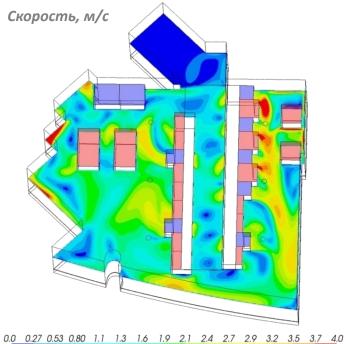
BCA

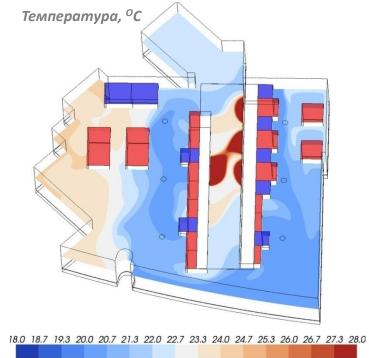
1. Задачи математического моделирования

2. Примеры моделирования объектов в России

2.1 Моделирование воздушных и скоростных полей







Центр обработки данных

ЗАДАЧА

Одним из основных требований бесперебойной работы серверов является поддержание оптимальной температуры воздуха в объеме серверных помещений, что достигается использованием систем кондиционирования.

выполнение

Мы провели математическое моделирование в объеме серверного помещения в двух режимах работы обычном и аварийном, т.е. при аварийной остановке одного из кондиционеров

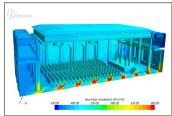
в наиболее термонагруженной зоне.

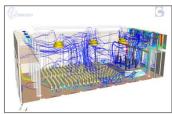
РЕЗУЛЬТАТ

Охлаждающее оборудование размещено нерационально. Принятое проектное решение переинвестировано на 50-60%

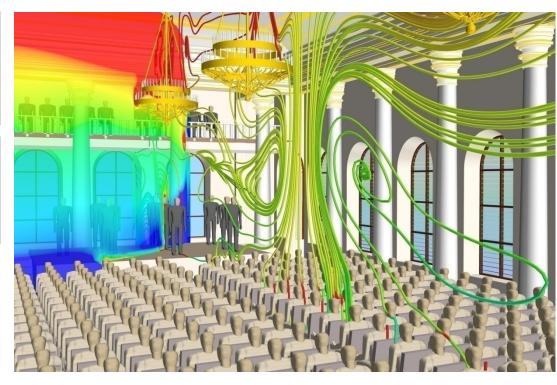
ЦОД. Екатеринбург.

Площадь 190 м²




БЮРО ТЕХНИКИ

Белоколонный зал Шуваловского дворца



ЗАДАЧА

Математическое моделирование являлось неотъемлемой частью проектных работ. Необходимо было, с помощью моделирования, сформировать окончательное решение по вентиляции зала и подтвердить его эффективность.

выполнение

Температурные и скоростные поля в объеме зала были получены с учетом теплопритоков от людей, освещения и солнечного излучения. Нагрузки от солнца в помещение приняты для 21 июня, 12 часов дня.

РЕЗУЛЬТАТ

Температура воздуха в зоне зрителей в основном в диапазоне 24-25°С, скорость воздуха 0.1-0.2м/с. В районе задних рядов наблюдаются значения 22°С.

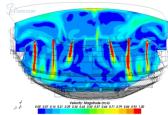
Эти параметры являются комфортными для зрителей в зале.

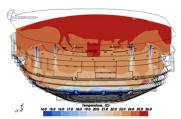
Белоколонный зал Шуваловского дворца. Санкт-Петербург

8

Площадь 450 м²







ЗАДАЧА

Ледовые Арены сложные инженерные сооружения, требующие больших капитальных затрат при строительстве и высоких расходов на содержание. Необходимо проверить эффективность проектных решений по вентиляции и кондиционированию с помощью методов математического моделирования.

РЕЗУЛЬТАТ

Выявлен ряд недостатков проектного решения:

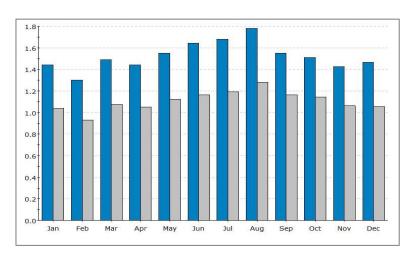
- струи из сопел не достигают зоны ледового поля,
- а отклоняются в сторону трибун;
- удаление воздуха из нижней части Арены приводит к перегреву ее верхней 30НЫ.

Перенос вытяжки в верхнюю зону будет способствовать как понижению средней температуры в объеме Арены, так и уменьшению нагрузок на ледовую поверхность.

Большая Ледовая Арена. Сочи.

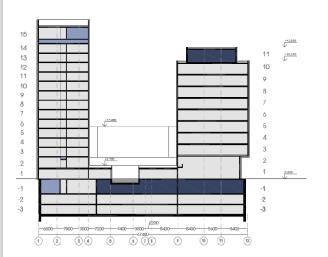
Количество зрителей 12 000.

1



BC A

2.2 Моделирование энергетических потоков

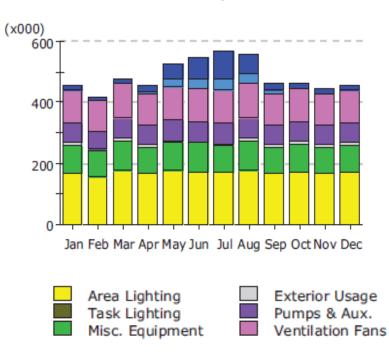


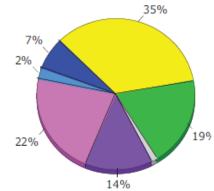
г. Москва, Сущевский вал, вл. 43 Общая площадь: 44 180 м2

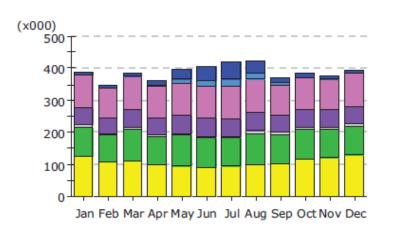
Проектный институт: институт дизайна моды бренда «ТВОЁ», Площадь: 12 370 м2

Гостиничный блок «Novotel», Площадь: 17 700 м2

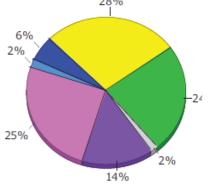
При помощи математического моделирования выполнен анализ эксплуатационных затрат для рационального внедрения более 10 энергоэффективных решений.


ИССЛЕДУЕМЫЕ СИСТЕМЫ	ВАРИАНТЫ	ЗНАЧЕНИЕ
ТАРИФЫ НА ЭЛЕКТРОЭНЕРГИЮ	1	Двухставочный
	2	Одноставочный
СИСТЕМЫ ОТОПЛЕНИЯ, ВЕНТИЛЯЦИИ И КОНДИЦИОНИ	3	Центральная СКВ во всем здании
	4	Установка датчиков углекислого газа
РОВАНИЯ ВОЗДУХА	5	Два хладоцентра (для гостиницы и проектного института)
	6	В хладоцентре проектного института использование льдоаккумулятора
ОГРАЖДАЮЩИЕ КОНСТРУКЦИИ	7	Повышенные значения сопротивления теплопередачи стен и окон
	8	Пониженные значения коэффициента пропускания солнечной энергии окнами
СИСТЕМЫ ОСВЕЩЕНИЯ	9	Уменьшение нагрузки от освещения
	10	Включение внутреннего освещения по датчикам освещенности

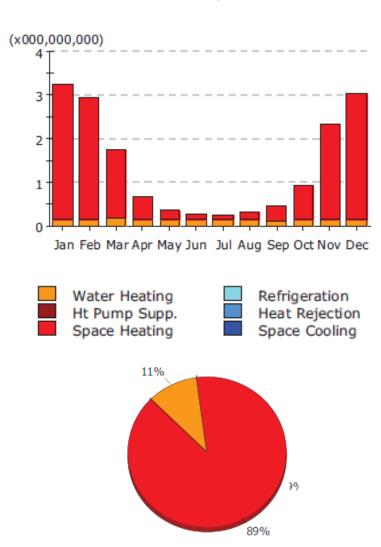


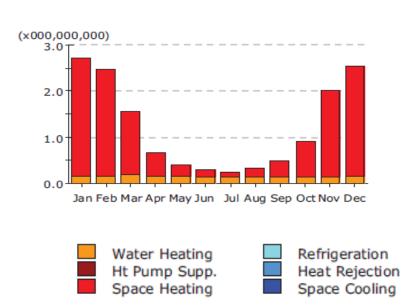


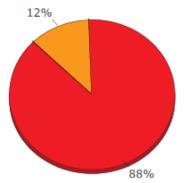
Базовый вариант



Энергоэффективный вариант

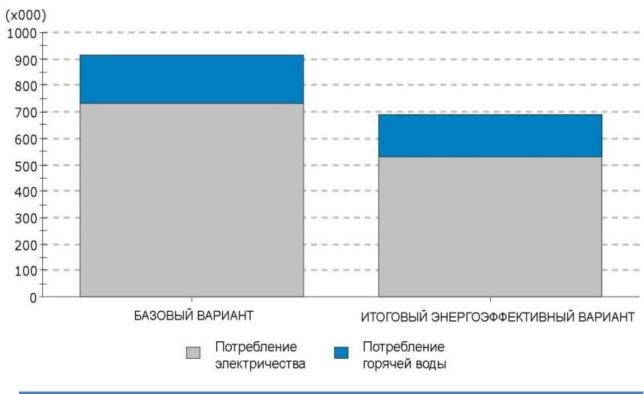






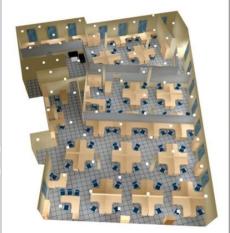
Базовый вариант

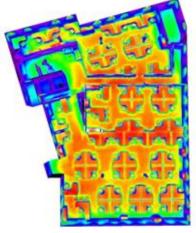
Энергоэффективный вариант

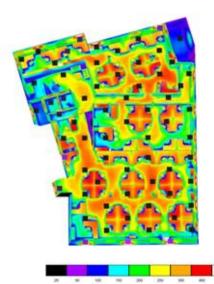


	Эксплуатационные затраты, \$/год	Изменение стоимости по сравнению с базовым вариантом	
Базовый вариант	912 800	-	-
Энергоэффективный вариант	687 818	224 982	24%

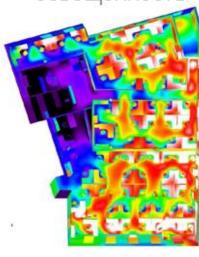
Офисный центр на обводном канале первый в Санкт-Петербурге и в России проект здания, где применяются инновационные технологии и требования системы LEED v3 по экологии энергоэффективности.






ЗАДАЧА

На всех рабочих местах в соответствии с требованиями LEED v3 должны быть предусмотрены индивидуальные приборы освещения. Необходимо подобрать оптимальное расположение светильников различных типов в соответствии с установленными санитарными нормами для комфортной работы сотрудников.


галогенные светильники

светодиодные светильники

естественная освещенность

выполнение

Моделирование освещенности выполнено в программе DIALUX. Проект освещения разработан с учетом обеспечения на рабочих местах освещенности не менее 300 люкс

РЕЗУПЬТАТ

Для обеспечения требуемой освещенности затрачивается: на светодиодные светильники - 8 775 Вт - 195 светильника. на галогенные светильники -21 330 BT - 472 светильника.

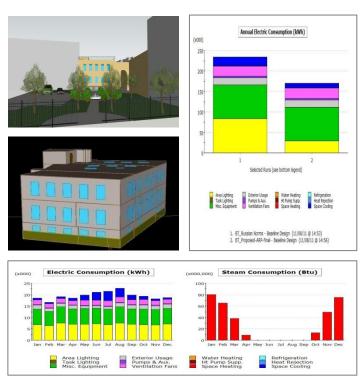
РЕКОМЕНДАЦИИ

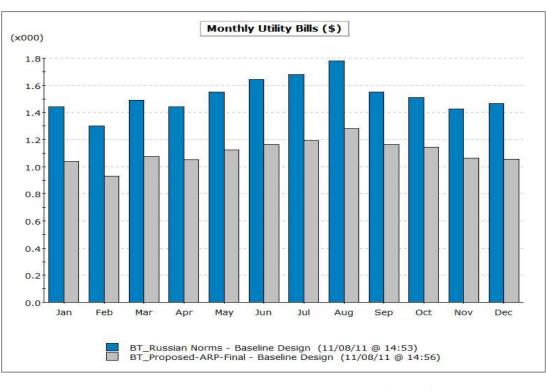
Новое здание, проектируемое на Золотой Сертификат LEED USGBC, должно быть оснащено светодиодными приборами общего (и индивидуального) освещения.

БЮРО ТЕХНИКИ

Новый офис БЮРО ТЕХНИКИ на Обводном канале. Санкт-Петербург

Площадь 1700 м²





ВСА

BC A

ЗАДАЧА

С помощью ряда специальных программ проводится анализ потребности здания в электричестве с целью получения наиболее энергоэффективного решения.

выполнение

Оценивается вклад каждого из потребителей энергии. Сравниваются несколько вариантов проектного решения с точки зрения энергопотребления.

РЕЗУЛЬТАТ

Получены диаграммы энергопотребления для разных вариантов проектного решения. Выбрано наиболее энергоэффективное решение.

Достоверно определена итоговая энергоэффективность. Новый офис БЮРО ТЕХНИКИ на Обводном канале. Санкт-Петербург

Площадь 1700 м²

BCA

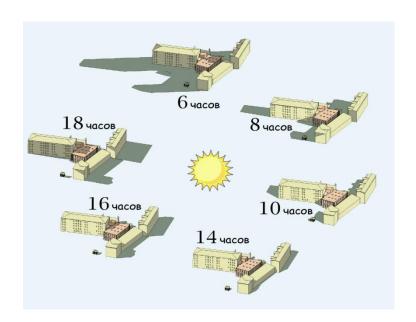
Annual Electric Consumption (kWh)

Selected Runs (see bottom legend)

1. FOK_36 - Baseline Design (07/06/11 @ 17:46) 2. FOK_36 - Chiller Plant EEM (07/06/11 @ 17:46)

Exterior Usage Water Heating Refrigeration
Pumps & Aux. Ht Pump Supp. Heat Rejection
Verdiation Fans Space Heating Space Cooling

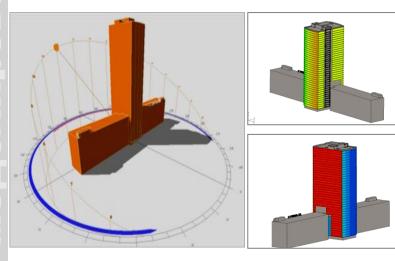
	ASHRAE 90.1	Российские нормы и стандарты	Предложенн ые решения	Потребление энергии по ASHRAE 90.1	Потребление энергии по Российским нормам
Отопление, кВт/ч в год	273	336	241	12%	28%
Холод, кВт/ч в год	11 690	21 862	10 201	13%	53%
Отклонение температур, кВт/ч в год	0	627	1 104	0%	-76%
Вентиляция, кВт/ч в год	48 789	18 042	20 124	59%	-12%
Насосы и вспомогательные средств, кВт/ч в год	8 311	3 152	4 276	49%	-36%
Освещение, кВт/ч в год	43 250	83 906	29 410	32%	65%
Оборудование, кВт/ч в год	82 340	82 340	82 340	0%	0%
Наружное освещение, кВт/ч в год	17 719	17 719	17 719	0%	0%
Итого, кВт/ч в год	212 100	227 875	165 179	22%	28%



2.3 Моделирование теплопритоков

Бизнес-центр «БАШНЯ»

г. Санкт-Петербург, пл. Конституции Общая площадь: 50 000м2



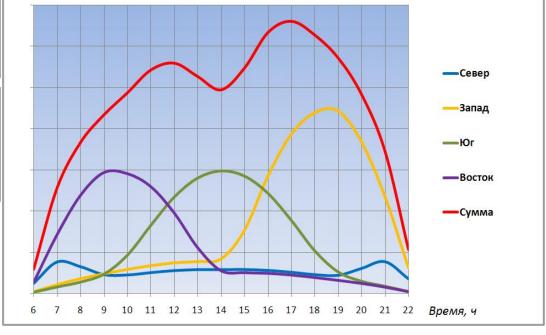
ЗАДАЧА

Теплопоступления от солнечной радиации в течении дня могут внести существенный вклад в тепловые нагрузки на здание. Особенно на высотное здание с большой площадью остекления.

Необходимо провести моделирование солнечного излучения для уникального для Санкт-Петербурга современного высотного здания бизнес центра.

выполнение

На этапе проектирования было проведено математическое моделирование потоков тепла от солнечного излучения.


РЕЗУЛЬТАТЫ

С учетом географического положения и времени года получены достоверные значения тепловых нагрузок на все фасады здания в течение суток.

Обосновано снижены затраты на хладоцентр и системы кондиционирования (на 37%).

Бизнес-центр «Лидер». Санкт-Петербург.

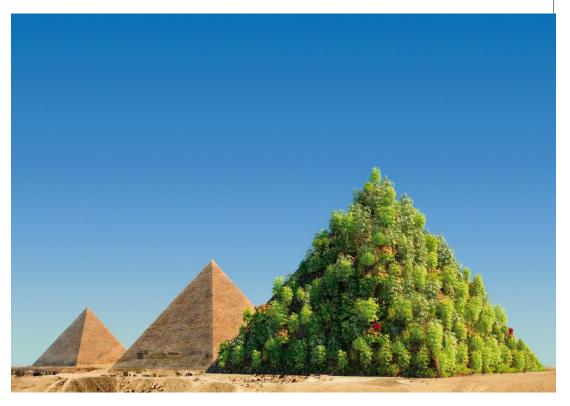
Площадь 51 000 м²

Теплопоступления от солнечной радиации, кВт

Энергомоделирование для LEED и BREEAM

- 1. «Олимпиада 2014» Breeam
- 2. Спортивные объекты FIFA, LEED
- 3. Инновационные центры, «Сколково», LEED

- **4. Инвесторы коммерческой и жилой недвижимости класса «Комфорт»:** Breeam, LEED
- **5. Иностранные компании. Коммерческая, промышленная и складская недвижимость.** Breeam, LEED
- **6. Застройщики, эксплуатирующие здание** Breeam, LEED



www.bt-comfort.ru

БЮРО ТЕХНИКИ:

Россия, 191002, Санкт-Петербург ул. Ломоносова, д.9, л.А, оф.2101

тел.: (812) 336-38-17/18/19 тел.: (812) 572-21-53/54/57

факс: (812) 315-26-79

